Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 3, 2026
-
Tarabra, V (Ed.)Thin-film-composite (TFC) nanofiltration membranes represent the pinnacle of membrane technology in water treatment and desalination. These membranes typically consist of a polyamide (PA) selective layer and a membrane support layer, often constructed from commercially available materials like polyethersulfone (PES). However, there exists an alternative approach that involves the use of different polymers, preferably upcycled waste polymers, as a viable support layer for TFC membranes. Successfully implementing the upcycling of waste plastics into high-value support membranes can make a significant contribution to addressing the issue of plastic waste pollution. One of the primary challenges associated with utilizing upcycled polymers as support layers is the potential impact on the polyamide selective layer of TFC membranes, subsequently affecting their performance in terms of permeability, rejection, and antifouling properties. In this study, we demonstrate the successful fabrication of TFC membranes with a support layer crafted from upcycled waste PVC pipe. We conducted a comprehensive investigation into the effects of upcycled PVC on the structural and physicochemical properties of the polyamide layer. The ultrafiltration (UF) support membranes were fabricated from waste PVC pipe via the nonsolvent induced phase separation (NIPS) method. Subsequently, a polyamide layer was synthesized atop the Upcycled PVC membrane using interfacial polymerization (IP). The physicochemical properties and performance of the TFC membranes with upcycled PVC support layer were compared with membranes with research-grade (RG) PVC and commercial PES support layers. The results unveiled that the TFC membrane with upcycled PVC support layer exhibited higher water permeability (18.2 LMH/bar), in contrast to RG TFC (15.5 LMH/bar) and PES TFC membranes (13.7 LMH/bar). Furthermore, the salt rejection capabilities of the upcycled PVC TFC membrane were competitive and well within an acceptable range.more » « less
-
In recent decades, the increased use of polyvinyl chloride (PVC) in industries and households has led to a surge in PVC waste pollution, which mandates developing solutions for the removal of waste PVC from the environment. We report upcycling, the conversion of waste material to a high-value-added product, of PVC-based products to electrospun (ES) fibers (mats). As two common PVC products, waste PVC pipe and waste PVC pool float were upcycled to ES fibers for water treatment. The fabrication process and fiber characteristics, such as morphology, surface charge, and mechanical strength of upcycled fibers, were studied and compared with the same fibers fabricated using research-grade (RG) PVC (commercial PVC powder). In addition, the effect of additives such as calcium carbonate in PVC waste products on the physicochemical properties of upcycled fibers was evaluated. The results showed that upcycling of waste PVC to ES fibers is feasible since the upcycled fibers showed similar or superior properties compared to their equivalent fibers from RG-PVC. Finally, the performance of upcycled fibers on the removal of dyes from the water was evaluated. The upcycled fibers from waste PVC pipes and pool float outperformed the RG PVC fibers in removing methylene blue from water by showing more than 97% removal efficiency. In addition, the upcycled PVC ES fibers showed more than 80% reusability after five adsorption−desorption cycles.more » « less
An official website of the United States government
